
Overview of Math 477

Even before reading all this, the most important thing to keep in mind is that nobody can learn probability
by only studying the theory. This is intended as a guide that puts the entire material together, so you can
see the bigger picture and how things fit together. But you will only gain familiarity with the topics by
practicing problems from the book and other sources. Also notice that the order presented here does not
always agree with the order in which everything was covered.

The good news: Students will be allowed to bring a formula sheet to the final exam, as long as it:

• is prepared by the student;

• is handwritten;

• contains only one page (just one side of the paper);

• contains only formulas found in this guide;

• gets approved by the instructor prior to the exam;

• is turned in together with the exam at the end.

The point is that, if you want a formula sheet, you are supposed to go through the trouble of writing it
yourself. You cannot make copies of another student’s sheet.

Contents

1 Combinatorics 2
1.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Properties of Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Events and Probability 3
2.1 Operations with Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Equally Likely Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Properties of Probability Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Random Variables 5
3.1 Discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Functions of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Joint Distribution 9
4.1 Discrete Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Continuous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Properties of Expectation, Variance and Covariance 13

6 Estimation Inequalities and Limit Theorems 14
6.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



1 Combinatorics

1.1 Counting

• Basic Principle of Counting: If an experiment has n1 possible outcomes, and a second independent
experiment has n2 possible outcomes, then the number of different combined outcomes is n1n2.

• Permutations: The number of ways to put n different objects in order is n!.

• Combinations: The number of ways to select a group of r different objects from a set of n different

objects is

(
n

r

)
=

n!

r!(n− r)!
.

• Arrangements: The number of ways to select r different objects from a set of n different objects if

the order in which the selection is made matters is (n)r =
n!

(n− r)!
(we just have to think of number

of possibilities for each member of this group of r that we are choosing).

• Multinomials: The number of ways to split n different objects into k different groups having

n1, n2, . . . , nk members (where n1 + n2 + . . .+ nk = n) is

(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
.

• Distributing equal objects: The number of ways to give n equal objects to r different people is
n+ r − 1

r − 1
.

• Distributing different objects: The number of ways to give n different objects to r different people
is rn (we just need to think of “where each object can go”).

• There are no easy ways to handle distribution of objects to equal recipients. This is the Theory of
Partitions.

1.2 Properties of Binomial Coefficients

• Symmetry:

(
n

r

)
=

(
n

n− r

)
Example:

(
20
7

)
=
(
20
13

)
• Sum of two consecutive:

(
n

r

)
+

(
n

r + 1

)
=

(
n+ 1

r + 1

)
Example:

(
16
7

)
+
(
16
8

)
=
(
17
8

)
• Sum of entire row:

n∑
i=0

(
n

i

)
= 2n

Example:
(
10
0

)
+
(
10
1

)
+
(
10
2

)
+ · · ·+

(
10
10

)
= 210.

• Sum of column up to a certain point:

n∑
i=r

(
i

r

)
=

(
n+ 1

r + 1

)
Example:

(
4
4

)
+
(
5
4

)
+
(
6
4

)
+ · · ·+

(
23
4

)
=
(
24
5

)
.

• Binomial Theorem: (x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i for any x, y ∈ R and n ∈ N

Example: (2x+ 5)4 =
(
4
0

)
(2x)054 +

(
4
1

)
(2x)153 +

(
4
2

)
(2x)252 +

(
4
3

)
(2x)351 +

(
4
4

)
(2x)450
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2 Events and Probability

2.1 Operations with Events

• Associative Laws:
(E ∪ F ) ∪G = E ∪ (F ∪G) = E ∪ F ∪G

(E ∩ F ) ∩G = E ∩ (F ∩G) = E ∩ F ∩G

• Distributive Laws:
(E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G)

(E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G)

• De Morgan’s Laws:
(E ∪ F )c = Ec ∩ F c

(E ∩ F )c = Ec ∪ F c

2.2 Equally Likely Outcomes

If all outcomes of the sample space are equally likely, then P (E) =
|E|
|S|

for any event E ⊆ S.

2.3 Properties of Probability Functions

• Boundedness: 0 ≤ P (E) ≤ 1 for any event E.

• Probability of sample space: P (S) = 1

• Probability of the null event: P (∅) = 0

• Probability of the complement: P (Ec) = 1− P (E)

• Monotonicity: P (E) ≤ P (F ) if E ⊆ F .

• Probability of disjoint union: P (E1 ∪E2 ∪E3 ∪ · · · ∪En) = P (E1) +P (E2) +P (E3) + · · ·+P (En)
if the events Ei are MUTUALLY DISJOINT.

• Independence: Events E1, E2, E3, . . . , En are INDEPENDENT if

P

 k⋂
j=1

Eij

 =

k∏
j=1

P (Eij ) , for all i1 < i2 < . . . ik and k = 1, 2, . . . , n

This means probability of intersection of any number of them is product of corresponding probabilities.

Example with two events: E and F are independent if P (E ∩ F ) = P (E)P (F )

Example with three events: E, F and G are independent if

P (E ∩ F ) = P (E)P (F ) , P (E ∩G) = P (E)P (G) , P (F ∩G) = P (F )P (G) ,

P (E ∩ F ∩G) = P (E)P (F )P (G)

Independence is sometimes assumed or given (then you can use that probabilities of intersections
are products of probabilities), and sometimes asked (then you need to show that probabilities of
intersections are products of probabilities).
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• Principle of Inclusion-Exclusion: For any finite collection of events E1, E2, . . . , En,

P

(
n⋃
i=1

Ei

)
=

n∑
k=1

∑
i1<i2<...<ik

(−1)k+1P

 k⋂
j=1

Eij


= sum of probabilities of each Ei n terms

− sum of probabilities of intersections of pairs

(
n

2

)
terms

+ sum of probabilities of intersections of triples

(
n

3

)
terms

− sum of probabilities of intersections of quadruples

(
n

4

)
terms

+ (· · · )

± sum of probabilities of intersections of groups of n− 1 events

(
n

n− 1

)
terms

∓ P (E1 ∩ E2 ∩ E3 ∩ · · · ∩ En) 1 term

Example with 2 events:

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

Example with 3 events:

P (E ∪ F ∪G) = P (E) + P (F ) + P (G)− P (E ∩ F )− P (E ∩G)− P (F ∩G) + P (E ∩ F ∩G)

2.4 Conditional Probability

• Definition of the conditional: The probability of E given F is

P (E|F ) =
P (E ∩ F )

P (F )

whenever P (F ) 6= 0. When a problem gives you the information that event F has happened and asks
you to find the probability of event E, it is asking for P (E|F ). The number P (E) does not change if
we know F happened or not, but the thing you are looking for is not P (E), it is P (E|F ).

• Properties of conditional: All usual properties apply to the first argument, not the second. For
example, these are true:

P (Ec|F ) = 1− P (E|F ) , P (A ∪B|F ) = P (A|F ) + P (B|F )− P (A ∩B|F )

And these are NOT TRUE:

P (E|F c) = 1− P (E|F ) , P (A|E ∪ F ) = P (A|E) + P (A|F )− P (A|E ∩ F ) (NO!)

• Law of Total Probability: If events A1, A2, . . . , An are alternatives (which is to say that they are
MUTUALLY DISJOINT and their union is the ENTIRE SAMPLE SPACE S), then

P (E) =

n∑
i=1

P (E|Ai)P (Ai)

Example with three alternatives A,B,C: P (E) = P (E|A)P (A) + P (E|B)P (B) + P (E|C)P (C)
Example with two alternatives A,Ac: P (E) = P (E|A)P (A) + P (E|Ac)P (Ac)

• Bayes’ Law:

P (E|F ) =
P (E)

P (F )
P (F |E)

Generally used when we want P (E|F ) but P (F |E) is easier to find. Also used in problems that want
to update probabilities given that something happened: We have different alternatives and we know
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something has happened, and we want the probability of one of the alternatives to have happened.
Example: 10% of people have a disease. A test returns positive 90% of the time when tested on diseased
people and 5% of the time when tested on healthy people. If someone’s test returned positive, what’s
the probability that they have the disease?

• Double Conditioning or Conditional Law of Total Probability: If events A1, A2, . . . , An are
alternatives (which means they are MUTUALLY DISJOINT and their union is the ENTIRE
SAMPLE SPACE S), then

P (E|F ) =

n∑
i=1

P (E|Ai ∩ F )P (Ai|F )

Example with three alternatives A,B,C:

P (E|F ) = P (E|A ∩ F )P (A|F ) + P (E|B ∩ F )P (B|F ) + P (E|C ∩ F )P (C|F )

Example with two alternatives A,Ac:

P (E|F ) = P (E|A ∩ F )P (A|F ) + P (E|Ac ∩ F )P (Ac|F )

Generally used in Bayes type problems where instead of probability of a certain alternative to have
happened we want probability that the given thing will happen again. Example: 10% of people have a
disease. A test returns positive 90% of the time when tested on diseased people and 5% of the time when
tested on healthy people. If someone’s test returned positive and they re-take it, what’s the probability
that it will return positive again?

3 Random Variables

3.1 Discrete

Suppose x1, x2, x3, . . . (potentially infinitely many values) are the values that a discrete random variable X
can take. Some of the things associated to X are:

• Probability mass function (pmf): fX(xi) = P (X = xi)

This is the function that gives the probabilities. The sum of all its values is 1, that is,
∑
i fX(xi) = 1.

• Cumulative distribution function (cdf): FX(x) = P (X ≤ x)

This is the function that gives the cumulative sum of all probabilities up to and including the probability
of x. It is increasing from 0 to 1, that is, limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1.

• Expected Value: E[X] =
∑
i xifX(xi) = x1P (X = x1) + x2P (X = x2) + x3P (X = x3) + · · ·

• Variance: Var(X) = E[X2]− E[X]2 ≥ 0

We need to be able to calculate E[X2] before, by doing

E[X2] =
∑
i

x2i fX(xi) = x21P (X = x1) + x22P (X = x2) + x23P (X = x3) + · · ·

• Standard Deviation: σ(X) =
√

Var(X)

• Moments: 1 = E[X0] , E[X] , E[X2] , E[X3] , . . .

• Moment generating function (mgf): MX(t) = E[etX ] , t ∈ R

What that means is

MX(t) =
∑
i

exitfX(xi)

= ex1tP (X = x1) + ex2tP (X = x2) + ex3tP (X = x3) + · · ·
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Here are examples of discrete random variables.

Binomial Bin(n, p) (for n ∈ N and 0 ≤ p ≤ 1)

fX(i) =

(
n

i

)
pi(1− p)n−i , i = 0, 1, . . . , n

E[X] = np , Var(X) = np(1− p) , MX(t) = (1− p+ pet)n

This RV counts number of successes in n trials, if each success has probability p of happening indepen-
dently from the other trials. A Binomial of parameters n and p is a sum of n independent Bernoullis
of parameter p, and that can be used to prove the formulas for E[X] and Var(X).

Bernoulli Ber(p) (for 0 ≤ p ≤ 1)
fX(0) = 1− p , fX(1) = p

E[X] = p , Var(X) = p(1− p) , MX(t) = 1− p+ pet

This is an RV that can only take values 0 and 1.

Geometric Geo(p) (for 0 ≤ p ≤ 1)
fX(i) = (1− p)i−1p , i = 1, 2, 3, . . .

E[X] =
1

p
, Var(X) =

1− p
p2

, MX(t) =
pet

1− (1− p)et
(t < − ln(1− p))

This RV counts number of trials necessary until a success happens, if each success has probability p of
happening independently from the other trials.

Negative
Binomial

NegBin(r, p) (for r ∈ N and 0 ≤ p ≤ 1)

fX(i) =

(
i− 1

r − 1

)
(1− p)i−rpr , i = 1, 2, 3, . . .

E[X] =
r

p
, Var(X) =

r(1− p)
p2

This RV counts number of trials necessary until r successes have happened, if each success has proba-
bility p of happening independently from the other trials.

Hypergeometric HypGeo(n,N,m) (for n,N,m ∈ N and m,n ≤ N)

fX(i) =

(
m

i

)(
N −m
n− i

)
(
N

n

) , i from max(0,m−N + n) to min(n,m)

E[X] =
mn

N

This RV counts the number of special items in a random selection of n items from a box that contains
N items which are m special and the rest ordinary.

Poisson Poi(λ) (for λ > 0)

fX(i) = e−λ
λi

i!
, i = 0, 1, 2, . . .

E[X] = λ , Var(X) = λ , MX(t) = e−λeλe
t

This RV is used to approximate probabilities involving Poisson processes: Counting number of oc-
currences of a certain type when it’s reasonable to assume that each individual occurrence has low
probability and their average over time remains constant. Poi(λ) approximates Bin(n, p) with λ = np
when p is small and np is moderately large.
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3.2 Continuous

Let X be a continuous random variable. Some of the things associated to X are:

• Probability density function (pdf): This is the function that we integrate to find probabilities.
This time there is no simple definition of it like

fX(xi) = P (X = xi) (NO!)

because this would be zero. We don’t have a direct definition of this function, but it should be thought
as measuring the likelihood of all possible values of X. Usually it will be defined only for x in a certain
range, which explains why we need to worry about endpoints of integration in the formulas. The total

probability should still be one:

∫ ∞
−∞

fX(x)dx = 1.

• Cumulative distribution function (cdf): FX(x) = P (X ≤ x)

This is the function that gives the cumulative sum of all probabilities up to x. It is increasing from 0
to 1, that is, limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1. The relationship between pdf and cdf is

FX(x) =

∫ x

−∞
fX(t)dt , fX(x) = F ′X(x)

• Expected Value: E[X] =
∫∞
−∞ xfX(x)dx

• Variance: Var(X) = E[X2]− E[X]2 ≥ 0

We need to be able to calculate E[X2] before, by doing E[X2] =
∫∞
−∞ x2fX(x)dx.

• Standard Deviation: σ(X) =
√

Var(X)

• Moments: 1 = E[X0] , E[X] , E[X2] , E[X3] , . . .

• Moment generating function (mgf): MX(t) = E[etX ] =
∫∞
−∞ etxfX(x)dx , t ∈ R

Here are examples of discrete random variables.

Uniform Uni(α, β) (for α < β)

fX(x) =
1

β − α
, α ≤ x ≤ β

E[X] =
α+ β

2
, Var(X) =

(β − α)2

12
, MX(t) =

eβt − eαt

(β − α)t

This represents a random variable that is uniformly distributed over [α, β], which means it has equal
chances of being anywhere in this interval.

Exponential Exp(λ) (for λ > 0)
fX(x) = λe−λx , 0 ≤ x <∞

FX(x) = 1− e−λx , 0 ≤ x <∞

E[X] =
1

λ
, Var(X) =

1

λ2
, MX(t) =

λ

λ− t
(t < λ)

This usually models time until something happens. The “property of no memory” says that probabil-
ities involving X conditioned on X ≥ a for some a > 0 are equal to the same probabilities with no
conditioning, as if time started counting again at instant a. For example, P (X ≤ 8|X ≥ 2) = P (X ≤ 6).
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Normal Nor(µ, σ2) (for σ > 0)

fX(x) =
1

σ
√

2π
e
−

(x− µ)2

2σ2 , x ∈ R

E[X] = µ , Var(X) = σ2 , MX(t) = exp

(
µt+

σ2t2

2

)
This models many different types of processes, discrete or continuous, that have a clear average and
may deviate from it in a symmetrical way to the right or the left. We cannot integrate the pdf to find
exact probabilities, since the function does not have an elementary integral. We must renormalize

and use a standard normal table. Renormalization means that Z =
X − µ
σ

is a standard normal

random variable, that is, a normal of mean 0 and variance 1. The cdf of a standard normal, FZ , is
usually denoted by Φ.

Also important to remember is that the sum of independent normals is a normal with sum of the means
and sum of the variances:

Xi ∼ Nor(µi, σ
2
i ) , i = 1, . . . , n =⇒

n∑
i=1

Xi ∼ Nor

(
n∑
i=1

µi,

n∑
i=1

σ2
i

)

This we showed using the mgf.

3.3 Functions of a Random Variable

Discrete If we know fX(x) and want to find fY (y) where Y = g(X), we usually can just plug-in y = g(x) into
the pmf (as long as g is injective):

fY (g(x)) = fX(x)

For example, if fX(3) = 0.4 and fX(4) = 0.6, then the pmf of Y = X2 is fY (9) = 0.4 and fY (16) = 0.6.

The expected value of Y = g(X) can be found by

E[g(X)] =
∑
i

g(xi)fX(xi) = g(x1)P (X = x1) + g(x2)P (X = x2) + g(x3)P (X = x3) + · · ·

For example we do this to find E[X2] before finding Var(X).

Continuous If we know fX(x) and want to find fY (y) where Y = g(X), what we CANNOT DO is simply plug-in
y = g(x) into the pdf. Instead:

– Find FX(x) =

∫ x

−∞
fX(t)dt.

– Find FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ h(y)), where h is the inverse function of g.

– Find fY (y) = F ′Y (y).

The expected value of Y = g(X) can be found by

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

For example we do this to find E[X2] before finding Var(X).
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4 Joint Distribution

When the problem involves two random variables, we need to know how they are distributed jointly.

4.1 Discrete Case

Joint pmf: The main function from which everything can be deduced is the joint probability mass
function

fXY (x, y) = P (X = x ∩ Y = y)

These values are usually written in a table.

X = x1 X = x2 X = x3 . . .

Y = y1 fXY (x1, y1) fXY (x2, y1) fXY (x3, y1) . . .
Y = y2 fXY (x1, y2) fXY (x2, y2) fXY (x3, y2) . . .
Y = y3 fXY (x1, y3) fXY (x2, y3) fXY (x3, y3) . . .

...
...

...
...

. . .

They are the probability that (X,Y ) has the value (x, y). The sum of all values is one, which is to say that,
if x1, x2, . . . are the values of X and y1, y2, . . . , are the values of Y , then∑

i

∑
j

fXY (xi, yj) = 1

Marginals: The marginals are the pmf’s of X and Y , obtained by summing rows and columns of the
table:

fX(x) =
∑
j

fXY (x, yj) , fY (y) =
∑
i

fXY (xi, y)

X = x1 X = x2 X = x3 . . .

Y = y1 fXY (x1, y1) fXY (x2, y1) fXY (x3, y1) . . . → fY (y1)
Y = y2 fXY (x1, y2) fXY (x2, y2) fXY (x3, y2) . . . → fY (y2)
Y = y3 fXY (x1, y3) fXY (x2, y3) fXY (x3, y3) . . . → fY (y3)

...
...

...
...

. . .

↓ ↓ ↓
fX(x1) fX(x2) fX(x3)

Independence: The random variables X and Y are INDEPENDENT if

fXY (x, y) = fX(x)fY (y)

This means the product of the sums in the margins gives the entries of the table. Independence is sometimes
assumed or given (then you can use that joint pmf is product of marginals), and sometimes asked (then you
need to show that joint pmf is product of marginals).

Conditional pmf: The conditional pmf of X given Y = y, and the conditional pmf of Y given X = x
are

fX|Y (x|y) =
fXY (x, y)

fY (y)
, fY |X(y|x) =

fXY (x, y)

fX(x)

They give the probability distribution of one variable given that the other has the given value. They are the
entries of the table divided by the corresponding marginal of the given variable.

Conditional expectation: The conditional expected value of X given Y = y, and the conditional
expected value of Y given X = x are

E[X|Y = y] =
∑
i

xifX|Y (xi|y) = x1fX|Y (x1|y) + x2fX|Y (x2|y) + x3fX|Y (x3|y) + . . .
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E[Y |X = x] =
∑
j

yjfY |X(yj |x) = y1fY |X(y1|x) + y2fY |X(y2|x) + y3fY |X(y3|x) + . . .

These are the usual formulas for expected values, but we use conditional pmf’s instead of the regular pmf’s.

Law of total expectation: This tells us how to find E[X] by conditioning on the possible values of Y ,
and vice-versa:

E[X] =
∑
j

E[X|Y = yj ]P (Y = yj) = E[X|Y = y1]P (Y = y1) + E[X|Y = y2]P (Y = y2) + . . .

E[Y ] =
∑
i

E[Y |X = xi]P (X = xi) = E[Y |X = x1]P (X = x1) + E[Y |X = x2]P (X = x2) + . . .

The numbers P (X = xi) and P (Y = yj) are of course the marginals fX(xi) and fY (yj).

Covariance: The covariance between X and Y is

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

This is positive when knowing that X is large makes Y more likely to be large, or knowing that X is small
makes Y more likely to be small. This is negative when X large implies Y small and vice-versa. This is
zero when X and Y are independent (although it can also be zero even if they are not independent). The
RV’s must have finite expected values for this to be defined.

Correlation: The correlation between X and Y is

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )

We always have −1 ≤ ρ(X,Y ) ≤ 1. Correlation is only ±1 when there is a linear relationship between X
and Y , that is, Y = aX + b. The RV’s must have finite expected values and nonzero variances for this to be
defined.

Functions of two RV’s: The way to obtain the pmf of Z = g(X,Y ) is usually to list out its possible
values and find its probabilities from the table. Once we have this we can for example calculate

E[Z] =
∑
i

zifZ(zi) = z1P (Z = z1) + z2P (Z = z2) + z3P (Z = z3) + · · ·

This could also have been calculated using the joint pdf:

E[g(X,Y )] =
∑
i

∑
j

g(xi, yj)fXY (xi, yj)

This means calculate the value of g(X,Y ) on each entry of the table and multiply that by the probability
which is that entry, then sum over all possible entries. Such an expected value is needed for example in
calculating Cov(X,Y ), because for that we need to know E[XY ].

4.2 Continuous Case

Joint pdf: The main function from which everything can be deduced is the joint probability density
function fXY . There is no formula for it, but it should still be thought of as the function that gives a measure
of likelihood for the possible values of the random vector (X,Y ). We integrate it to find probabilities. The
total probability should still be one: ∫ ∞

−∞

∫ ∞
−∞

fXY (x, y)dxdy = 1

Marginals: The marginals are the pdf’s of X and Y , obtained by integrating out the other variable:

fX(x) =

∫ ∞
−∞

fXY (x, y)dy , fY (y) =

∫ ∞
−∞

fXY (x, y)dx
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Independence: The random variables X and Y are INDEPENDENT if

fXY (x, y) = fX(x)fY (y)

Independence is sometimes assumed or given (then you can use that joint pdf is product of marginals), and
sometimes asked (then you need to show that joint pdf is product of marginals).

Conditional pdf: The conditional pdf of X given Y = y, and the conditional pdf of Y given X = x are

fX|Y (x|y) =
fXY (x, y)

fY (y)
, fY |X(y|x) =

fXY (x, y)

fX(x)

They give the probability distribution of one variable given that the other has the given value. They are
the functions that you integrate in order to find conditional probabilities when the condition given is of the
form X = a or Y = b for some number a or b. For example:

P (X ≥ 5 | Y = 3) =

∫ ∞
5

fX|Y (x|3)dx , P (−1 ≤ Y ≤ 2 | X = 0) =

∫ 2

−1
fY |X(y|0)dy

This is because, if we tried to use the formula for conditional probability, we would get 0 over 0, since
P (Y = a) = 0 in the continuous case:

P (X ≥ 5 | Y = 3) =
P (X ≥ 5 ∩ Y = 3)

P (Y = 3)
(NO!)

Conditionals involving inequalities as conditions should still be treated by the definition of conditional
probability. For example:

P (X ≤ 2 | Y ≥ 4) =
P (X ≤ 2 ∩ Y ≥ 4)

P (Y ≥ 4)
=

∫ 2

−∞
∫∞
4
fXY (x, y)dydx∫∞

4
fY (y)dy

Conditional expectation: The conditional expected value of X given Y = y, and the conditional
expected value of Y given X = x are

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx

E[Y |X = x] =

∫ ∞
−∞

yfY |X(y|x)dy

These are functions of y and x, respectively. These are the usual formulas for expected values, but we use
conditional pdf’s instead of the regular pdf’s.

Law of total expectation: This tells us how to find E[X] by conditioning on the possible values of Y ,
and vice-versa:

E[X] =

∫ ∞
−∞

E[X|Y = y]fY (y)dy

E[Y ] =

∫ ∞
−∞

E[Y |X = x]fX(x)dx

Covariance and Correlation: Exactly the same as in the discrete case. Only now we need integrals
to find the necessary expected values.

Functions of two RV’s: The way to obtain the pdf of Z = g(X,Y ) is:

• Find FZ(z) = P (Z ≤ z) = P (g(X,Y ) ≤ z) by integrating the joint pdf in the appropriate region
defined by the inequality g(X,Y ) ≤ z.

• Find fZ(z) = F ′Z(z).
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A particular example is when Z = X + Y for INDEPENDENT X and Y . This procedure will yield the
formula

fX+Y (z) =

∫ ∞
−∞

fX(t)fY (z − t)dt =

∫ ∞
−∞

fX(z − t)fY (t)dt

Once we have the pdf of g(X,Y ) we can for example calculate

E[Z] =

∫ ∞
−∞

zfZ(z)dz

This could also have been calculated using the joint pdf:

E[g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy

Such an expected value is needed for example in calculating Cov(X,Y ), because for that we need to know
E[XY ].
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5 Properties of Expectation, Variance and Covariance

• Linearity:
E[aX + b] = aE[X] + b

Cov(aX, bY ) = abCov(X,Y )

Variance is NOT linear: Var(aX + b) = a2Var(X)

• Sums of random variables:

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

Cov

 n∑
i=1

Xi,

m∑
j=1

Yj

 =

n∑
i=1

m∑
j=1

Cov(Xi, Yj)

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) only when the random variables X1, . . . , Xn are INDEPENDENT

A good way to find variance of a sum when the RV’s are not independent is to use

E[X2]− E[X] = 2
∑
i<j

E[XiXj ]

(
X =

n∑
i=1

Xi

)

to find E[X2] and then find the variance. This is particularly useful when the RV’s Xi are Bernoullis.

The sum on the right hand side is over all pairs of the random variables, so there are

(
n

2

)
terms. Here

is an example of this formula with 3 RV’s:

E[(X + Y + Z)2]− E[X + Y + Z] = 2

(
E[XY ] + E[XZ] + E[Y Z]

)
• Relationship between variance and covariance:

Var(X) = Cov(X,X)

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj)

This last formula is another way to find variance of a sum if it’s easy to find the covariances. The last

sum contains

(
n

2

)
terms, as before. Here are examples of this formula:

With two RV’s: Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

With three RV’s: Var(X+Y +Z) = Var(X)+Var(Y )+Var(Z)+2

(
Cov(X,Y )+Cov(X,Z)+Cov(Y,Z)

)
• Moment generating function

The mgf is important because it can be used to calculate:

– Moments of one random variable:

M ′X(0) = E[X] , M ′′X(0) = E[X2] , M ′′′X (0) = E[X3] , . . .

– The mgf of a sum of two INDEPENDENT random variables:

MX+Y (t) = MX(t)MY (t)
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6 Estimation Inequalities and Limit Theorems

6.1 Inequalities

For these inequalities we usually don’t worry about the difference between ≤ and <, or between ≥ and >,
because they are usually applied to continuous RV’s or to approximate discrete RV’s by continuous ones.

• Markov’s Inequality: If X is a random variable that can only be ≥ 0, then

P (X ≥ a) ≤ E[X]

a
, for all a > 0

This also implies

P (X ≤ a) ≥ 1− E[X]

a
, for all a > 0

These are used when we want to bound probabilities but we only have information about the mean.

• Chebyshev’s Inequality: If X is a random variable with E[X] <∞ and Var(X) <∞, then

P (|X − µ| ≥ k) ≤ σ2

k2
, for all k > 0

This also implies

P (|X − µ| ≤ k) ≥ 1− σ2

k2
, for all k > 0

In here we denote E[X] by µ and Var(X) by σ2, even though X may not be a normal random variable.
These are used when we want to bound probabilities but we only have information about the mean
and the variance.

6.2 Limit Theorems

These deep results say what happens to the average of a large number of random variables. They give
meaning to our interpretation of probability as a measure of how often things happen in the long run.

• Weak Law of Large Numbers: Let X1, X2, . . . be independent random variables having a common
probability distribution (pdf or pmf). Let us denote their common mean by µ. Then

lim
n→∞

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ < ε

)
= 1 , for all ε > 0

This is saying that, when the same random experiment is performed several times, the average result
will have a high probability of being close to the expected value of each experiment.

• Strong Law of Large Numbers: Let X1, X2, . . . be independent random variables having a common
probability distribution (pdf or pmf). Let us denote their common mean by µ. Then

P

(
lim
n→∞

∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ = 0

)
= 1

This is a slightly stronger way to say something which has the same interpretation as above.

• Central Limit Theorem: Let X1, X2, . . . be independent random variables having a common prob-
ability distribution (pdf or pmf). Let us denote their common mean by µ and their common variance
by σ2. Then

lim
n→∞

P (X1 + · · ·+Xn ≤ a) =
1

σ
√

2πn

∫ a

−∞
e−(x−nµ)

2/2nσ2

dx , for all a ∈ R

This is saying that the sum of a large number, n, of identical random variables is always approximately
a normal with mean nµ and variance nσ2, independently of what type of random variables they were.
Because of this we can approximate probabilities related to such a sum by normalizing it first:

Z =
X1 + · · ·+Xn − nµ

σ
√
n

is approximately the standard normal.
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